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Abstract

We propose a simple polynomial basis set that is easily extendable to any desired higher-order accuracy. This

method is based on the Constrained Interpolation Profile (CIP) method and the profile is chosen so that the subgrid

scale solution approaches the real solution by the constraints from the spatial derivative of the original equation. By

adopting the higher-order derivatives of the master equations as constraints to generate a self-consistent subgrid profile,

this solution quickly converges. 3rd and 5th order polynomials are tested on the one-dimensional Schr€odinger equation
and are proved to give solutions a few orders of magnitude higher in accuracy than conventional methods for lower-

lying eigenstates.
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There is a growing interest in the accurate solutions of the excited states of atoms and their time-de-
pendent solutions for computational design of material properties, catalysis, medical drugs, and so on, or to

elucidate non-linear phenomena in strong interactions. Much pioneering work has been performed with

this goal in mind [1–4].

The purpose of this paper is to establish a systematic and simple method to get solutions of the

Schr€odinger equation with any desired accuracy by generalizing the concept of the Constrained Interpo-

lation Profile (CIP) method. The CIP method was first proposed by one of the authors for the solution of

hyperbolic-type equations [5–9]. In its original form, it used a cubic polynomial to describe the subgrid-
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scale profile. All the coefficients of the polynomial are determined so that the piece-wise polynomial can

reproduce a local analytical solution within a grid cell by the constraints from the spatial derivatives of the

original equation. Resultingly, the CIP method can accurately describe the solution of a propagating wave
having a wavelength of only two grid cells, which is beyond the capability of existing schemes. In this paper,

we apply the proposed method to the one-dimensional Schr€odinger equation and obtain very accurate

solutions which are a few orders of magnitude better than conventional methods for lower-lying eigen-

states.

We need a basis set where it is easy to define values and derivatives of an arbitrary function f ðxÞ at the
grid points. Therefore, we assume that the functions in the domain of R1 can be approximated by the CIP-

basis set of degree K method (CIP-BSK), where K refers to the order of the derivatives we retain in the

calculation, through the expression

f ðxÞ ¼
XN
i¼0

XK
k¼0

f ðkÞ
i /k;iðxÞ; ð1Þ

where f ðkÞ
i is the kth coefficient at the grid point xi, the summation on the index i is taken over all grid

points, and the basis functions /k;iðxÞ on the local support ½xi�1; xiþ1� are expressed in the form

/k;iðxÞ ¼ hi�1;iðxÞ/k;i�ðxÞ þ hi;iþ1ðxÞ/k;iþðxÞ; ð2Þ

where hi;iþ1ðxÞ ¼ hðx� xiÞ � hðx� xiþ1Þ, hðxÞ is the Heaviside step function, and /k;i�ðxÞ, /k;iþðxÞ are

polynomials of degree ð2K þ 1Þ determined from the constraints:

Dl
x/k;i�ðxiÞ ¼

1 for l ¼ k;

0 for l ¼ 0; 1; . . . ; k � 1; k þ 1; . . . ;K;

�

Dl
x/k;i�ðxi�1Þ ¼ 0 for k ¼ 0; 1; . . . ;K;

ð3Þ

where Dx is the derivative operator in x, and D0
x ¼ 1. For a uniform grid system, the basis function satisfies

the translational relation /k;iðxÞ ¼ /k;i�nðx� xnÞ.
Especially, the interpolating function in ½xi; xiþ1� for the CIP-BS1 method is written by the Hermite type

interpolation as f ðxÞ ¼ c0 þ c1xþ c2x2 þ c3x3, where

c0 ¼ fi; c1 ¼ f 0
i ;

c2 ¼ 3ðfiþ1 � fiÞ=Dx2 � ð2f 0
i þ f 0

iþ1Þ=Dx;
c3 ¼ 2ðfi � fiþ1Þ=Dx3 þ ðf 0

i þ f 0
iþ1Þ=Dx2

ð4Þ

and x ¼ x� xi, Dx ¼ xiþ1 � xi. The coefficients c0; c1; c2; c3 are the same as those of the CIP method

determined with the constraints: f ðxiÞ ¼ fi, f 0ðxiÞ ¼ f 0
i , f ðxiþ1Þ ¼ fiþ1, f 0ðxiþ1Þ ¼ f 0

iþ1.

The first derivative of the basis function is expressed as Dx/k;iðxÞ ¼ hi�1;i/
0
k;i�ðxÞ þ hi;iþ1/

0
k;iþðxÞ: Here, we

have used the fact that /k;i�ðxÞdðx� xi�1Þ ¼ 0 due to the relation xdðxÞ ¼ 0, and /k;i�ðxiÞ ¼ /k;iþðxiÞ, where
dðxÞ is the Dirac delta function. Similarly, we can obtain the lth order derivatives of /k;iðxÞ for l6K þ 1 as
Dl

x/k;iðxÞ ¼ hi�1;i/
ðlÞ
k;i�ðxÞ þ hi;iþ1/

ðlÞ
k;iþðxÞ: Although the basis functions are constructed by using distribution

functions, the functions represented in the CIP-BSK method belong to the CK class. Therefore, it is easily

found that the kth spatial derivative of f ðxÞ at the grid point xi equals the coefficient f ðkÞ
i , i.e.,

Dk
xf ðxÞjx¼xi

¼ f ðkÞ
i . We can say that the basis set belongs to a complete set in the sense that the expansion (1)

could represent the exact solution with any degree of accuracy in the limit N ! 1 or K ! 1. If f ðxÞ ¼ 0 in

Eq. (1), we can deduce that all the coefficients f ðkÞ
i are zero, and that the basis functions are linearly in-

dependent. Then the function f ðxÞ can also be represented by this basis set as f ¼ ðf1; f2; . . . ; fNÞ, where
fi ¼ ðf ð0Þ

i ; f ð1Þ
i ; . . . ; f ðKÞ

i Þ.
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To better understand the procedure we use to solve the differential equation that will be given below, we

review the process of the CIP method in comparison with the CIP-BS method. If the equation to be solved

has a form like of =ot ¼ L½f �, where L is the spatial operator, then the time evolution of f at the grid point is
given by this equation. The CIP method uses the derivative of this equation, of 0=ot ¼ oL½f �=ox, to deter-

mine the time evolution of f 0 at the grid point. Thus the profile inside the grid cell is described by Eq. (1).

Instead of using such an equation at each local grid point, we here use the integrated equation over the grid

cell. Since /0;i peaked at the point i and /1;i is zero at i, these are almost orthogonal. Therefore, integration

of the equation multiplied by /0;i picks up the contribution from f and corresponds to of =ot ¼ L½f � while
the integration with /1;i corresponds to of 0=ot ¼ oL½f �=ox as in the CIP method. The prediction of the value

and derivative based on the original equation is thus realized by the scalar product hgjhi �
R
R gðxÞhðxÞdx;

where gðxÞ is the f conjugate of gðxÞ. When L is a linear operator, multiplying h/k;ij from the left to the
equation, we obtain the matrix equation Sdf=dt ¼ Lf, where S is a positive-definite matrix with the element

Ski;k0i0 ¼ h/k;ij/k0 ;i0 i. Since Ski;k0i0 is non-zero only for i ¼ i0 � 1; i0; i0 þ 1, S is a band diagonal matrix with

bandwidth 3ðK þ 1Þ. The matrix representation of the operator L also has the same structure as the matrix

S, and the matrix elements h/k;ijLj/k0;i0 i can be analytically calculated. The subset of the matrix equation

resulting from the multiplication of h/k;ij corresponds to the equation of k=ot ¼ okL½f �=oxk, for example, the

subset using h/2;ij corresponds to the equation of 00=ot ¼ o2L½f �=ox2, and so on for higher order ð6KÞ
derivatives. This procedure is equivalent to the one in the Galerkin method in which the residual i of

ot � L½f �
is required to be orthogonal to the basis functions /k;i. The matrix elements of the differential operator
h/k;ijDl

xj/k0 ;i0 i, which appear in L, can be defined properly for l6K þ 2 and using integration by parts the

relation h/k;ijDl
xj/k0;i0 i ¼ ð�1ÞmhDm

x /k;ijDl�m
x j/k0;i0 i holds for m ¼ 0; 1; . . . ; l. It is worth noting that the matrix

elements for lPK þ 3 are not defined, because the terms like hðxÞd0ðxÞ cannot be regularized.

Writing the wavefunction as uðx; tÞ ¼
PN

i¼1

PK
k¼0 a

ðkÞ
i ðtÞ/k;iðxÞ, where aðkÞi ðtÞ is a complex number, the

one-dimensional time-dependent Schr€odinger equation in an external potential V ðx; tÞ

i
ouðx; tÞ

ot
¼ � 1

2m
D2

xuðx; tÞ þ V ðr; tÞuðx; tÞ ð5Þ

is reduced to the ordinary differential equation

iS
d

dt
aðtÞ ¼ ðH0 þ HIðtÞÞaðtÞ; ð6Þ

where atomic units (�h ¼ e ¼ me ¼ 1) are used. In general, this procedure is used to form equations for the

coefficients f ðkÞ
i from the the partial differential equations for f ðxÞ. Even if nonlinear terms are involved, for

example HI ¼ cuðx; tÞ2, the structure of the matrices is same as the one for the linear equation except that

the coefficients f ðkÞ
i would be included. In the case of the stationary potential, the energy spectrum is

obtained by setting aðkÞi ðtÞ ¼ expð�iktÞaðkÞi and solving the generalized eigenvalue equation

ðH0 þ HIÞa ¼ kSa: ð7Þ

We have applied the proposed idea to the Schr€odinger equation to demonstrate its efficiency and accuracy.

For simplicity we consider the one-dimensional eigenvalue problem Eq. (7) with a uniform grid. The ex-

tension to multidimensional problems or non-uniform grid systems is straightforward in a manner similar

to the CIP method [7]. Furthermore, it is easy to solve the time-dependent Schr€odinger equation (6) by

means of either an explicit or implicit time propagation scheme [10].

For the first case, we consider the eigenvalue spectrum for the Schr€odinger equation for the free electron

in a box. The results are shown in Tables 1 and 2, where the box size is taken to be 1.0 a.u. As seen from the
error for the number of grid points N ¼ 50, the results by the CIP-BS2 method, which includes second

derivatives, are 105–106 times more accurate than those by the CIP-BS1 method. It takes 0.069 s with a



Table 1

Relative errors of eigenvalues of the free electron and the CPU time on the Alpha EV60 processor with 833 MHz

n Analytical CIP-BS1, N ¼ 50 CIP-BS1, N ¼ 100 CIP-BS2, N ¼ 24 CIP-BS2, N ¼ 50

1 1.2337005501 8.54· 10�13 7.90· 10�13 1.19· 10�13 6.75· 10�13

2 11.103304951 2.31· 10�11 4.99· 10�13 1.51· 10�14 1.23· 10�13

3 30.842513753 4.92· 10�10 8.79· 10�12 2.04· 10�14 4.07· 10�14

4 60.451326957 3.68· 10�9 5.92· 10�11 3.11· 10�14 1.12· 10�14

5 99.929744561 1.64· 10�8 2.62· 10�10 7.48· 10�13 2.70· 10�14

10 445.36589860 1.33· 10�6 2.26· 10�8 1.78· 10�10 1.33· 10�12

15 103.75421627 1.45· 10�5 2.75· 10�7 1.77· 10�7 1.04· 10�10

CPU (s) 0.024 0.149 0.015 0.069

The box size¼ 1.0 a.u. and N is the number of grid points. The boundary condition for the wavefunction is zero at r ¼ 0 a.u., and

zero derivative at r ¼ 1:0 a.u.

Table 2

Same as Table 1. The boundary condition for the wavefunction is zero at r ¼ 1:0 a.u

No. Analytical CIP-BS1, N ¼ 50 CIP-BS1, N ¼ 100 CIP-BS2, N ¼ 25 CIP-BS2, N ¼ 50

1 4.9348022005 2.83· 10�12 1.63· 10�12 1.79· 10�13 1.47· 10�13

2 19.739208802 1.30· 10�10 2.71· 10�12 3.73· 10�14 1.04· 10�13

3 44.413219805 1.46· 10�9 2.39· 10�11 1.10· 10�14 2.35· 10�13

4 78.956835209 8.15· 10�9 1.30· 10�10 2.19· 10�13 3.26· 10�14

5 123.37005501 3.07· 10�8 4.93· 10�10 2.22· 10�12 2.53· 10�14

10 493.48022005 1.78· 10�6 3.07· 10�8 3.03· 10�9 2.31· 10�12

15 111.03304951 1.75· 10�5 3.35· 10�7 2.50· 10�7 1.47· 10�10

CPU (s) 0.024 0.149 0.015 0.069
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single CPU of the Alphaserver ES40 for the N ¼ 50 grid point case of the CIP-BS2 method. We can see

from Tables 1 and 2 that the CPU times approximately proportional to the number of matrix elements, i.e.

ððK þ 1ÞNÞ2, when the routine DSYGV of the LAPACK library is used to solve the generalized eigenvalue
problem. The zero derivative boundary condition at grid point N is built in by setting a1N ¼ 0 (i.e.,

u0ðrN Þ ¼ 0). In the same way setting the boundary to zero is done by setting a0N ¼ 0 (i.e., uð0Þ ¼ 0). Since

the derivatives are included in the state vector a, incorporation of the boundary conditions can be achieved

keeping a one-to-one correspondence to the analytical ones. Periodic or other types of boundary conditions

can also be treated in the same manner. Although we use basis functions that do not satisfy boundary

conditions, it is not necessary to add a Bloch operator to the Hamiltonian as in the discrete variable

representation (DVR) method [3]. The numerical results in Tables 1 and 2 indicate good agreement with the

exact values.
For the second case, we consider the eigenvalue spectrum for the radial Schr€odinger equation of the

hydrogen atom. The system size is set to 1000 a.u. in order to obtain sufficient precision for states with a

high principal quantum number n. In Table 3, we present the results of energy levels for s-, p-, and

d-orbitals. Here the grid interval is 1 a.u. and the boundary condition uð0Þ ¼ uðrN Þ ¼ 0 is imposed for this

eigenvalue problem. We can see that the eigenvectors simultaneously contain derivatives consistent with the

eigenfunctions from samples of the calculated orbitals shown in Fig. 1. The results show excellent agree-

ment with the analytical spectrum. It should be emphasized that the singularities due to the kinetic operator

(1=r2) and the Coulomb potential (1=r) at r ¼ 0 are eliminated in the Hamiltonian by taking the scalar
product.
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Fig. 1. The calculated (a) eigenfunctions and (b) their first derivatives for the 3d, 4d, 5d orbitals of the hydrogen atom. They are not

normalized or interpolated.

Table 3

Relative errors of energy levels of bound states of the hydrogen atom with the CIP-BS2 method

n Analytical l ¼ 0 l ¼ 1 l ¼ 2

1 )5.0000000000 · 10�1 8.21· 10�9

2 )1.2500000000 · 10�1 2.77· 10�10 8.16· 10�11

3 )5.5555555556 · 10�2 7.34· 10�11 3.10· 10�11 1.40· 10�12

4 )3.1250000000 · 10�2 3.88· 10�11 1.48· 10�11 3.63· 10�13

5 )2.0000000000 · 10�2 2.37· 10�11 3.12· 10�11 6.25· 10�12

8 )7.8125000000 · 10�3 4.09· 10�12 2.84· 10�12 1.32· 10�12

10 )5.0000000000 · 10�3 2.17· 10�12 3.14· 10�12 7.90· 10�12

15 )2.2222222222 · 10�3 1.11· 10�11 1.49· 10�11 5.34· 10�12

17 )1.7301038062 · 10�3 7.61· 10�12 2.53· 10�12 3.48· 10�12

The system size is 1000.0 a.u. and the grid interval is 1.0 a.u. The boundary condition for the wavefunction is zero at r ¼ 0 and

r ¼ 1000:0 a.u.
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For the third case, we consider the eigenvalue spectrum for the Schr€odinger equation in the Morse

potential, V ðxÞ ¼ D½ðe�2ax � 2e�axÞ þ 1�, which accurately describes the vibrations of a two-atom molecule.
Using the variable z ¼ 2c

a e
�ax, where c ¼ ð2mDÞ1=2, the equation turns out to be a confluent hypergeometric

equation so that the complete solution becomes [11]

uðzÞ ¼ zb=ae�z=2fC1Mða; b; zÞ þ C2Uða; b; zÞg; ð8Þ

where b ¼ ð2mðD� EÞÞ1=2, c ¼ 2b
a þ 1, a ¼ c

2
� c

a, Mða; b; zÞ and Uða; b; zÞ are Kummer�s functions, m is the
reduced mass, and E is the energy of the system. For the bound state, the constant C2 must vanish, the

constant C1 is fixed by the normalization, and the eigenenergy must be determined from the relation

a ¼ �n, where n is a non-negative integer which satisfies 0 < E < D. The results are shown in Table 4,



Table 4

Relative errors of energy levels of bound states in the Morse potential with the CIP-BS2 method for different grid numbers N

n Analytical N ¼ 80 N ¼ 100 N ¼ 140 Braun et al.a Wei et al.b

0 2.8617197881 · 10�4 9.53· 10�14 6.95· 10�14 1.73· 10�13

1 8.5299662358 · 10�4 7.07· 10�13 1.10· 10�13 4.56· 10�14 1.18· 10�8 1.64· 10�11

2 1.4124621846 · 10�3 2.77· 10�12 3.41· 10�13 2.09· 10�14 2.13· 10�8 3.05· 10�11

3 1.9645686617 · 10�3 8.58· 10�12 8.39· 10�13 6.20· 10�14 2.55· 10�8 3.57· 10�11

4 2.5093160551 · 10�3 2.24· 10�11 2.18· 10�12 5.93· 10�14 2.80· 10�8 3.92· 10�11

5 3.0467043647 · 10�3 5.08· 10�11 4.94· 10�12 1.71· 10�13 2.90· 10�8 4.28· 10�11

6 3.5767335905 · 10�3 1.95· 10�10 1.00· 10�11 3.08· 10�13 3.08· 10�8 4.20· 10�11

11 6.1164934624 · 10�3 1.35· 10�9 1.24· 10�10 3.71· 10�12 3.27· 10�8 4.58· 10�11

16 8.4722762394 · 10�3 6.19· 10�9 6.15· 10�10 1.81· 10�11 3.31· 10�8 4.77· 10�11

20 1.0224438953 · 10�3 1.79· 10�8 1.58· 10�9 4.45· 10�11 3.39· 10�8 2.83· 10�11

The boundary condition for the wavefunction is zero at r ¼ �0:8 and r ¼ 2:0 a.u. Note. Errors of N ¼ 80 are same as those of

N ¼ 100 for n6 6.
aRef. [1] (N ¼ 128).
bRef. [2] (N ¼ 100).
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where the parameters are a ¼ 0:9374 a.u., D ¼ 0:0224 a.u., m ¼ 119406 a.u., and �0:86 x6 2:0. These
parameters are chosen to compare our results with those by Braun et al. [1] who used the block-Lanczos

method with the Chebyshev approximation and Wei et al. [2] who used Lagrange Distributed Approxi-

mating Functionals (LDAFs). The boundary condition for the wavefunction is zero at r ¼ �0:8 and r ¼ 2:0
a.u. As seen from the error, our N ¼ 80 and N ¼ 100 grid point results are 104–105 times more accurate

than those of Braun et al., and 5–100 times more accurate than those of Wei et al. for the lower-lying

eigenstates (n6 3). The high eigenvalues can be improved by enlarging the system size, and/or increasing the
density of grid points, as shown in our N ¼ 140 grid point results in Table 4. Although these dispositions

induce the increase of the number of states (ðK þ 1Þ per grid point), the computational time does not in-

crease so rapidly due to the inherent locality of the CIP-BS method (narrower bandwidth than LDAFs).

While the CIP method has provided accurate solutions for various differential equations, especially for

hydrodynamics, the CIP-BS method is more attractive for the analysis of quantum mechanical processes.

The CIP-BS method, which is the reconstruction of the CIP method from the view point of the basis

function of the Hermite type interpolating functions, has incorporated the two important properties in the

CIP method: (i) Any variable inside the grid cell is approximated not only by values but also the derivatives
consistent with the governing equations. (ii) Interpolating functions are uniquely determined without

problem- or algorithm-specific parameters. The system size and grid intervals are essentially inevitable

parameters to be adjusted. The CIP-BS method offers additional advantages as follows: (i) It is easily

extended to higher order polynomials or to other functions with any desired accuracy by simply adopting

the higher-order derivatives of the original equations as constraints to generate a self-consistent subgrid

profile. (We have shown the use of higher-order basis set is essential to increase the accuracy.) (ii) It leads to

band diagonal matrices, which are easily adapted to a number of numerical methods developed for large,

sparse linear systems [10], by transforming the Schr€odinger equation. If the system is linear and contains
only time-independent interactions, all the relevant matrices are constant and the time propagation of the

wavefunction is carried out in a computationally efficient way (low CPU cost and reduced storage). (iii) The

boundary conditions are imposed in a simple manner with a one-to-one correspondence to the analytical

ones for not only the Dirichlet boundary conditions but also the Neumann boundary conditions. (iv) It

provides a proper means to relieve numerical difficulties due to singularities, e.g., Coulomb potential. (v)

Although our basis set is non-orthogonal and contains distribution functions, it introduces a close re-

semblance between quantum mechanics and numerical simulations. (vi) It is straightforwardly extended for

solving various linear and nonlinear partial differential equations in the study of the dynamics of a broad
spectrum of complex physical processes.
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